A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics.
نویسندگان
چکیده
Real-time reverse transcription (RT) PCR is currently the most sensitive method for the detection of low-abundance mRNAs. Two relative quantitative methods have been adopted: the standard curve method and the comparative C(T) method. The latter is used when the amplification efficiency of a reference gene is equal to that of the target gene; otherwise the standard curve method is applied. Based on the simulation of kinetic process of real-time PCR, we have developed a new method for quantitation and normalization of gene transcripts. In our method, the amplification efficiency for each individual reaction is calculated from the kinetic curve, and the initial amount of gene transcript is derived and normalized. Simulation demonstrated that our method is more accurate than the comparative C(T) method and would save more time than the relative standard curve method. We have used the new method to quantify gene expression levels of nine two-pore potassium channels. The relative levels of gene expression revealed by our quantitative method were broadly consistent with those estimated by routine RT-PCR, but the results also showed that amplification efficiencies varied from gene to gene and from sample to sample. Our method provides a simple and accurate approach to quantifying gene expression level with the advantages that neither construction of standard curve nor validation experiments are needed.
منابع مشابه
Development and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملDevelopment of New Modified Simple Polymerase Chain Reaction and Real-time Polymerase Chain Reaction for the Identification of Iranian Brucella abortus Strains
Brucellosis is primarily a worldwide zoonotic disease caused by Brucella species. The genus Brucella contains highly infectious species that are classified as biological threat agents. In this regard, the identification of Brucella can be a time-consuming and labor-intensive process posing a real risk of laboratory-acquired infection to the laboratory staff. This stud...
متن کاملDiagnosis of Foot-and-Mouth Disease Virus by Real Time Reverse Transcription Polymerase Chain Reaction Assay in Iran
Background and Aims: Accurate and rapid diagnosis is necessary for effective control and prevention of foot-and-mouth disease (FMD). In present study, was evaluated real time reverse transcription-polymerase chain reaction (rRT-PCR) assay along with diagnostic routine methods for the detection of all seven serotypes of FMD virus (FMDV), namely O, C, A, SAT1, 2, 3 and Asia 1 in biological sample...
متن کاملDevelopment of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses
Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 302 1 شماره
صفحات -
تاریخ انتشار 2002